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Disclaimer 
• The views expressed in this talk are those of 

the speakers and not their employers. 

I work in Intel’s research labs.  I don’t build products.  
Instead, I get to poke into dark corners and think silly 

thoughts… just to make sure we don’t miss any great ideas.     
 

Hence, my views are by design far “off the roadmap”. 

•  This presentation is a “conversation” between two talks .. One 
from NERSC and one from me. Just to be clear, when a slide 
comes from “my talk” I always indicate that fact by putting a 

picture of me in a kayak on the slide in question. 

• I work with very smart people. Anything stupid I say 
is mine … don’t blame my collaborators. 
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Cori: A pre-exascale supercomputer for the 
Office of Science workload


•  System	will	begin	to	transi1on	
the	workload	to	more	energy	
efficient	architectures	

•  Will	showcase	technologies	
expected	in	exascale	systems	
–  Processors	with	many	‘slow’	cores	
and	longer	vector	units		

–  Deepening	memory	and	storage	
hierarchies	

System	named	a=er	Gerty	Cori,	
Biochemist	and	first	American	
woman	to	receive	the	Nobel	
prize	in	science.	

Image	source:	Wikipedia	
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Office of Science workload


•  System	will	begin	to	transi1on	
the	workload	to	more	energy	
efficient	architectures	

•  Will	showcase	technologies	
expected	in	exascale	systems	
–  Processors	with	many	‘slow’	cores	
and	longer	vector	units		

–  Deepening	memory	and	storage	
hierarchies	

System	named	a=er	Gerty	Cori,	
Biochemist	and	first	American	
woman	to	receive	the	Nobel	
prize	in	science.	

Image	source:	Wikipedia	

It	is	so	nice	that	they	named	their	machine	
a=er	a	chemist.		Chemists	rule!!!!	
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Cori Configuration – and a new home

•  Over	9,300	Knights	Landing	

compute	nodes	
–  Self-hosted,	up	to	72	cores,	16	GB	
high	bandwidth	memory	

•  1,600	Haswell	compute	nodes	as	
a	data	par11on	

•  Aries	Interconnect	
•  Lustre	File	system		

–  28	PB	capacity,	>700	GB/sec	I/O	
bandwidth	

•  Delivery	in	two	phases,	summer	
2015	and	2016	into	new	CRT	
facility	
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•  Delivery	in	two	phases,	summer	
2015	and	2016	into	new	CRT	
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Wait	a	minute.		I’m	the	Intel	guy.		
It’s	my	job	to	talk	about	

hardware	



Increasing parallelism in 
Xeon and Xeon Phi 

 

Intel® Xeon® 
processor 

64-bit 
series  

Intel® Xeon® 
processor  

5100 
series 

Intel® Xeon® 
processor  

5500 
series 

Intel® Xeon® 
processor  

5600 
series 

Intel® Xeon® 
processor  
code-named  

Sandy 
Bridge 

EP 

Intel® Xeon® 
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code-named 
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Bridge  

EP  

Intel® Xeon® 
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code-named 

Haswell 
EX  
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2 2 8 12 16 24 36 

128 128 128 128 256 256 256 
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coprocessor 

Knights 
Corner 

Intel® Xeon Phi™ 
processor & 

coprocessor 
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Landing1 

61 60+ 

244 4x 
#cores 

512 2x512 

*Product specification for launched and shipped products available on ark.intel.com.                                   1. Not launched. 

Core(s) 

Threads 

SIMD 
Width 



Lots	of	cores	with	in	package	memory	

8 Source: Avinash Sodani, Hot Chips 2015 KNL talk 



Connec1ng	1les	

9 Source: Avinash Sodani, Hot Chips 2015 KNL talk 



Network	interface	Chip	in	the	
package	…		

10 Source: Avinash Sodani, Hot Chips 2015 KNL talk 



Cache		
Model	

Let	the	hardware	automaZcally	
manage	the	integrated	on-package	
memory	as	an	“L3”	cache	between	
KNL	CPU	and	external	DDR	

Flat		
Model	

Manually	manage	how	your	
applicaZon	uses	the	integrated	on-
package	memory	and	external	DDR	
for	peak	performance	

Hybrid	
Model	

Harness	the	benefits	of	both	cache	
and	flat	models	by	segmenZng	the	
integrated	on-package	memory	

Maximum	performance	through	higher	memory	bandwidth	and	
flexibility	

Knights Landing Integrated On-Package Memory!



Near 
Memory 

HBW  
In-Package 
Memory 

KNL CPU 
 

HBW  
In-Package 
Memory 

HBW 
In-Package 
Memory 

HBW  
In-Package 
Memory 

HBW 
In-Package 
Memory 

HBW  
In-Package 
Memory 

. . . 

. . . 

CPU Package 

DDR 

DDR 

DDR 

. . . 

Cache	

PCB 

Near 
Memory 

Far 
 Memory 

Side 
View 

Top 
View 

Slide	from	Intel	-	11	-	
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To run effectively on Cori users will have to:


•  Manage	Domain	Parallelism	
–  independent	program	
units;	explicit	

•  Increase	Node	Parallelism	
–  independent	execuZon	
units	within	the	program;	
generally	explicit	

•  Exploit	Data	Parallelism	
–  Same	operaZon	on		
mulZple	elements	

•  Improve	data	locality	
–  Cache	blocking;		
Use	on-package	memory	

MPI	 MPI	 MPI	

x	



y	



z	



Threads	

x	



y	



z	



|--> DO I = 1, N 
|       R(I) = B(I) + A(I)  
|--> ENDDO 

Threads	 Threads	
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Threads	 Threads	

You	mean	vectorizaZon.		The	only	way	you	can	
be	happy	with	KNL	is	if	you	can	keep	the	pair	

of	vector	units	per	core	busy.	



Vector (SIMD) Programming 

•  Architects love vector units, 
since they permit space- and 
energy- efficient parallel 
implementations. 

•  However, standard SIMD 
instructions on CPUs are 
inflexible, and can be difficult to 
use. 

•  Options: 
– Let the compiler do the job 
– Assist the compiler with language 

level constructs for explicit 
vectoriztion. 

– Use intrinsics … an assembly level 
approach. 

4	way	SIMD	(SSE)	 16	way	SIMD	
(Xeon™	PHI)	

Slide Source: Kurt Keutzer UC Berkeley, CS194 lecture 



Example Problem:   
Numerical Integration 

∫  4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 X 0.0 
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Serial PI program 

static long num_steps = 100000; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0/(float) num_steps; 
 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 

Normally, I’d use double types throughout to minimize roundoff errors especially 
on the accumulation into sum.  But to maximize impact of vectorization for these 
exercise, we’ll use float types.     
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Explicit Vectorization PI program 

static long num_steps = 100000; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0/(float) num_steps; 
               #pragma omp simd reduction(+:sum) 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 

Note that literals (such as 4.0, 1.0 and 0.5) are not explicitly declared with the 
desired type.  The C language treats these as “double” and that impacts  
compiler optimizations.  We call this the default case. 
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Explicit Vectorization PI program 

static long num_steps = 100000; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0f/(float) num_steps; 
               #pragma omp simd reduction(+:sum) 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5f)*step; 
    sum = sum + 4.0f/(1.0f+x*x); 
   } 
   pi = step * sum; 

} 

Note that literals (such as 4.0, 1.0 and 0.5) are explicitly declared as type float 
(to match the types of the variables in this code.  This greatly enhances 
vectorization and compiler optimization. 

Literals as double (no-vec), 0.012 secs 
Literals as Float (no-vec),    0.0042 secs 
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Pi Program: Vectorization with intriniscs (SSE) 
 float pi_sse(int  num_steps) 
{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4]; 
   step = 1.0/(float) num_steps; 
 
   __m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); 
   __m128 one     = _mm_load1_ps(&scalar_one); 
   __m128 four    = _mm_load1_ps(&scalar_four); 
   __m128 vstep  = _mm_load1_ps(&step); 
   __m128 sum    = _mm_load1_ps(&scalar_zero); 
   __m128 xvec;   __m128 denom;  __m128 eye; 
 
  for (int i=0;i< num_steps; i=i+4){          // unroll loop 4 times 
      ival       = (float)i;                             // and assume num_steps%4 = 0 
      eye       = _mm_load1_ps(&ival); 
      xvec     = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep); 
      denom  = _mm_add_ps(_mm_mul_ps(xvec,xvec),one); 
      sum     = _mm_add_ps(_mm_div_ps(four,denom),sum); 
   } 
   _mm_store_ps(&vsum[0],sum); 
   pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]); 
  return pi; 
} 
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Pi Program: Vector intriniscs plus OpenMP 
 float pi_sse(int  num_steps) 
{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4]; 
   float local_sum[NTHREADS];   // set NTHREADS elsewhere, often to num of cores 
   step = 1.0/(float) num_steps;  pi = 0.0; 
  #pragma omp parallel 
  {    int i, ID=omp_get_thread_num(); 
        __m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); 
        __m128 one     = _mm_load1_ps(&scalar_one); 
        __m128 four    = _mm_load1_ps(&scalar_four); 
        __m128 vstep  = _mm_load1_ps(&step); 
        __m128 sum    = _mm_load1_ps(&scalar_zero); 
        __m128 xvec;   __m128 denom;  __m128 eye; 
       #pragma omp for 
       for (int i=0;i< num_steps; i=i+4){            
          ival       = (float)i;                               
          eye       = _mm_load1_ps(&ival); 
          xvec     = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep); 
          denom  = _mm_add_ps(_mm_mul_ps(xvec,xvec),one); 
          sum     = _mm_add_ps(_mm_div_ps(four,denom),sum); 
       } 
      _mm_store_ps(&vsum[0],sum); 
      local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]); 
  } 
   for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k]; 
  return pi; 
} 

To parallelize with OpenMP: 
1.  Promote local_sum to an 

array to there is a variable 
private to each thread but 
available after the parallel 
region 

2.  Add parallel region and 
declare vector registers inside 
the parallel region so each 
thread has their own copy. 

3.  Add workshop loop (for) 
construct 

4.  Add local sums after the 
parallel region to create the 
final value for pi 
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PI program Results: 
4194304 steps    
Times in Seconds (50 runs, min time reported) 

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

Base: lits 
float -no-vec 

Lits float, 
autovrec 

List Float, 
OMP SIMD 

Lits Float, 
OMP SIMD 

Par For 

SSE SSE, OMP 
par for 

run times(sec) 

–  Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5. 
–  Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408 

Float, autovec,     0.0023 secs 
Float, OMP SIMD, 0.0028 secs 
Float, SSE,           0.0016 secs 



Explicit Vectorization – Performance 
Impact 
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ICC auto-vec 

ICC SIMD directive 

Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP 
with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on 
OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312. 

Explicit Vectorization looks better when you move to more complex problems. 
 



What about application portability?

•  Major	US	computer	centers	have	and	will	con1nue	to	have	

fundamentally	different	architectures,	for	example:	
–  NERSC	is	based	on	KNL		
–  OLCF	and	LLNL	have	announced	an	IBM+NVIDIA	architecture	

– FUNDAMENTALLY	DIFFERENT	
	
•  Will	applica1ons	be	able	to	run	across	both	architectures?	
•  Several	DOE	workshops	to	address	portability	

–  Best	PracZces	ApplicaZon	portability	workshop	–	Sept	2015	
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Application Programmers Dilemma


•  It	actually	only	seemed	hard	before	–	
–  First	there	were	vectors,	we	coped	
–  Then	there	was	the	MPP	revoluZon	so,	

• We	ripped	out	all	that	vector	code	in	favor	of	message	
passing	

• We	finally	came	up	with	a	standard	that	most	could	live	
with	–MPI	

–  For	the	brave	of	heart	you	could	try	MPI	+	OpenMP,	but	it	
really	didn’t	do	much	

–  OpenMP	worked	well	on	smaller	numbers	of	processors	
(cores)	in	shared	memory	
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• We	ripped	out	all	that	vector	code	in	favor	of	message	
passing	

• We	finally	came	up	with	a	standard	that	most	could	live	
with	–MPI	

–  For	the	brave	of	heart	you	could	try	MPI	+	OpenMP,	but	it	
really	didn’t	do	much	

–  OpenMP	worked	well	on	smaller	numbers	of	processors	
(cores)	in	shared	memory	

Scaling	is	typically	a	funcZon	of	the	algorithm	and	how	you	
use	an	API,	not	the	API	itself.		I	haven’t	seen	the	codes	my	
good	friends	from	NERSC	are	talking	about	when	making	this	
statement,	but	in	my	experience,	HPC	codes	o=en	poorly	use	
OpenMP.		They	just	liner	their	codes	with	“parallel	for”;	not	
thinking	about	restructuring	code	to	opZmize	data	access	
panerns	(NUMA	issues)	and	reduce	thread	management	
overhead	



Programming Models by the Dozen, !
what to do now


Emperor	Joseph	II:	My	dear	young	man,	don't	
take	it	too	hard.	Your	work	is	ingenious.	It's	
quality	work.	And	there	are	simply	too	many	
notes,	that's	all.	Just	cut	a	few	and	it	will	be	
perfect.	
	
Mozart:	Which	few	did	you	have	in	mind,	
Majesty?	
	



We tried to solve the programmability problem by 
searching for the right programming environment 

ABCPL 
ACE  
ACT++  
Active messages  
Adl 
Adsmith 
ADDAP 
AFAPI 
ALWAN 
AM 
AMDC 
AppLeS 
Amoeba  
ARTS 
Athapascan-0b 
Aurora 
Automap 
bb_threads  
Blaze 
BSP 
BlockComm  
C*.  
"C* in C  
C**  
CarlOS 
Cashmere 
C4 
CC++  
Chu 
Charlotte 
Charm 
Charm++ 
Cid 
Cilk 
CM-Fortran  
Converse 
Code 
COOL 

CORRELATE  
CPS  
CRL 
CSP 
Cthreads  
CUMULVS 
DAGGER 
DAPPLE  
Data Parallel C  
DC++  
DCE++  
DDD 
DICE. 
DIPC  
DOLIB 
DOME  
DOSMOS. 
DRL 
DSM-Threads 
Ease . 
ECO 
Eiffel  
Eilean  
Emerald  
EPL  
Excalibur 
Express 
Falcon 
Filaments 
FM 
FLASH 
The FORCE  
Fork 
Fortran-M 
FX 
GA  
GAMMA  
Glenda 

GLU 
GUARD 
HAsL. 
Haskell  
HPC++ 
JAVAR. 
HORUS 
HPC 
HPF 
IMPACT 
ISIS. 
JAVAR 
JADE  
Java RMI 
javaPG 
JavaSpace 
JIDL 
Joyce 
Khoros 
Karma  
KOAN/Fortran-S 
LAM 
Lilac  
Linda 
JADA  
WWWinda 
ISETL-Linda  
ParLin  
Eilean  
P4-Linda 
Glenda  
POSYBL 
Objective-Linda 
LiPS 
Locust 
Lparx 
Lucid 
Maisie  
Manifold 

Mentat 
Legion 
Meta Chaos  
Midway 
Millipede 
CparPar 
Mirage 
MpC 
MOSIX 
Modula-P 
Modula-2* 
Multipol 
MPI 
MPC++ 
Munin 
Nano-Threads 
NESL 
NetClasses++  
Nexus 
Nimrod 
NOW 
Objective Linda 
Occam 
Omega 
OpenMP 
Orca 
OOF90 
P++ 
P3L 
p4-Linda 
Pablo 
PADE 
PADRE  
Panda  
Papers  
AFAPI. 
 Para++ 
Paradigm 

Parafrase2  
Paralation  
Parallel-C++  
Parallaxis 
ParC  
ParLib++ 
ParLin 
Parmacs 
Parti 
pC 
pC++ 
PCN 
PCP:  
PH 
PEACE 
PCU 
PET 
PETSc 
PENNY 
Phosphorus  
POET. 
Polaris  
POOMA 
POOL-T 
PRESTO 
P-RIO  
Prospero 
Proteus  
QPC++  
PVM 
PSI 
PSDM 
Quake 
Quark 
Quick Threads 
Sage++ 
SCANDAL 
 SAM 

pC++  
SCHEDULE 
SciTL  
POET  
SDDA. 
SHMEM  
SIMPLE 
Sina  
SISAL. 
distributed smalltalk  
SMI. 
SONiC 
Split-C. 
SR 
Sthreads  
Strand. 
SUIF. 
Synergy 
Telegrphos 
SuperPascal  
TCGMSG. 
Threads.h++. 
TreadMarks 
TRAPPER 
uC++  
UNITY  
UC  
V  
ViC*  
Visifold V-NUS  
VPE 
Win32 threads  
WinPar  
WWWinda  
 XENOOPS   
XPC 
Zounds 
ZPL 

Parallel programming environments in the 90’s 

Third party names are the property of their owners. 



A warning I’ve been making for the last 10 years 

28 



My optimistic view from 2005 … 

We’ve learned our 
lesson … we emphasize 

a small number of 
industry standards	



But we didn’t learn our lesson 
History is repeating itself! 

Third party names are the property of their owners. 

 A small sampling of models from the NEW golden age of 
parallel programming (from the literature 2010-2012) 

We’ve slipped back into the “just create a new language”  mentality.	
Note: I’m not criticizing these technologies.  I’m criticizing our 

collective urge to create so many of them. 

AM++   
ArBB 
BSP 
C++11   
C++AMP  
Charm++ 
Chapel  
Cilk++ 
CnC  
coArray Fortran  
Codelets  

Copperhead  
CUDA 
DryadOpt 
Erlang 
Fortress 
GA  
GO  
Gossamer 
GPars 
GRAMPS 
Hadoop 
HMMP 

ISPC 
Java 
Liszt 
MapReduce  
MATE-CG 
MCAPI  
MPI 
NESL 
OoOJava 
OpenMP  
OpenCL 
OpenSHMEM 

OpenACC  
PAMI  
Parallel Haskell 
ParalleX  
PATUS  
PLINQ  
PPL  
Pthreads  
PXIF  
PyPar 
Plan42 
RCCE 

Scala  
SIAL 
STAPL  
STM  
SWARM  
TBB  
UPC 
Win32 
threads  
X10  
XMT  
ZPL 



What has gone wrong? 

n  In the old days (the 90’s), the applications community 
were more aggressive with the vendors. 
¨  MPI was created and the applications community lined up behind 

it.  Vendors responded so that within a year of the first MPI spec, 
quality implementation were everywhere 

¨  OpenMP was created and the applications community wrote it 
into RFPs and committed to it.  Within a year of the first OpenMP 
spec, quality implementations were everywhere.   

n  Today? 
¨  Users are letting vendors lock them to a platform. What message 

are you giving to the vendor community when you use CUDA* or 
OpenACC*?  If you won’t commit to a vendor neutral, open 
standard, why should the vendors? 

31 *Third party names are the property of their owners 



An application programmers biggest fear


•  An	applica1on	programmers	biggest	fear	is	that	the	
language	they	toiled	to	learn	will	be	the	wrong	
choice	
–  Doesn’t	give	performance	
–  Too	hard	to	figure	out	
–  No	interoperability	

–  NOT	THERE	TWO	YEARS	LATER		



Community input to open standards provides 
a path forward for portability


•  Portability	is	difficult,	nothing	about	it	makes	parallel	
programming	easier,	except	perhaps	it	encourages	the	
programmer	to	hide	parallelism	

•  People	are	generally	in	favor	of	using	open	standards	
and	working	towards	good	standards	
–  Examples:	MPI	Forum,	OpenMP	Architecture	Review	Board,	etc.	

	
Jeff	Squyers	(Cisco)	at	EuroMPI	Sept.	2015:	
..we	will	be	“Defining	what	parallel	compuZng	will	be	for	the	
world,	this	is	the	MPI	forum.	For	everyone.”	
	



Whining about performance 
Portability 

•  Do we have performance portability today?   
– NO: Even in the “serial world” programs routinely deliver single digit 

efficiencies. 
–  If the goal is a large fraction of peak performance, you will need to 

specialize code for the platform. 

•  But there is a pretty darn good performance portable 
language.  It’s called OpenCL 



Matrix multiplication example: 
Naïve solution, one dot product per 
element of C 

•  Multiplication of two dense matrices. 

•  To make this fast, you need to break the problem down into chunks that do lots 
of work for sub problems that fit in fast memory (OpenCL local memory). 

 

= x 
A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Matrix multiplication:  
sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
    int i, j, k;!
    for (i = 0; i < N; i++) {!
      for (j = 0; j < N; j++) {!
        for (k = 0; k < N; k++) { !
          C[i*N+j] += A[i*N+k] * B[k*N+j];!
        }!
      }!
    }!
}!



Matrix multiplication:  
sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
    int i, j, k;!
    for (i = 0; i < N; i++)  !
      for (j = 0; j < N; j++)!
        for (k = 0; k < N; k++)!
          C[i*N+j] += A[i*N+k] * B[k*N+j];!
}!
!
!

Let’s get rid of all 
those ugly brackets 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (i = ib*NB; i < (ib+1)*NB; i++)!
     for (jb = 0; jb < NB; jb++) !
       for (j = jb*NB; j < (jb+1)*NB; j++)!
         for (kb = 0; kb < NB; kb++) !
           for (k = kb*NB; k < (kb+1)*NB; k++)!
             C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Break each loop 
into chunks with a 
size chosen to 
match the size of 
your fast memory 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
   for (j = jb*NB; j < (jb+1)*NB; j++)!
     for (k = kb*NB; k < (kb+1)*NB; k++)!
       C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Rearrange loop nest 
to move loops over 
blocks “out” and 

leave loops over a 
single block together 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
   for (j = jb*NB; j < (jb+1)*NB; j++)!
     for (k = kb*NB; k < (kb+1)*NB; k++)!
       C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

This is just a local 
matrix multiplication 

of a single block 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
       sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb!
!
 !
 !
 !
} !

Note: sgemm is the name of the level three BLAS routine to multiply two matrices 

= x 

A(ib,:) B(:,jb) C(ib,jb) 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 

Load A and B 
blocks, wait for all 
work-items to finish 

Wait for 
everyone to 
finish before 
going to next 

iteration of Kblk 
loop. 



Matrix multiplication … Portable Performance 

Case CPU Xeon Phi Core i7, HD 
Graphics 

NVIDIA 
Tesla 

Sequential C (compiled /O3) 224.4 1221.5  
C(i,j) per work-item, all 
global 841.5 13591 3721 

C row per work-item, all 
global 869.1 4418 4196 

C row per work-item, A row 
private 1038.4 24403 8584 

C row per work-item, A 
private, B local 3984.2 5041 8182 

Block oriented approach 
using local (blksz=16) 12271.3  74051 

(126322*) 
38348 

(53687*) 119305 

Block oriented approach 
using local (blksz=32) 16268.8 

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB 
* The comp was run twice and only the second time is reported (hides cost of memory movement. 

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory.  ICC 2013 sp1 update 2. 
Tesla®	M2090	GPU	from	NVIDIA®	with	a	max	of	16	compute	units,	512	PEs	

•  Single Precision matrix multiplication (order 1000 matrices)   

Could I do this with 
OpenMP today?  No.  
But I look forward to 
trying once OpenMP 

is ready 



BUDE: Bristol University 
Docking Engine 

One program running well on a wide range of platforms 



Whining about performance 
Portability 

•  Do we have performance portability today?   
– NO: Even in the “serial world” programs routinely deliver single digit 

efficiencies. 
–  If the goal is a large fraction of peak performance, you will need to 

specialize code for the platform. 

•  However there is a pretty darn good performance portable 
language.  It’s called OpenCL 

•  But this focus on mythical “Performance Portability” misses the 
point.  The issue is “maintainability”.   
– You must be able maintain a body of code that will live for many years 

over many different systems.  
– Having a common code base using a portable programming 

environment  … even if you must fill the code with if-defs or have 
architecture specific versions of key kernels … is the only way to 
support maintainability.   



~35  Application White Papers submitted to 
recent DOE Workshop on Portability


•  Take-aways:	
–  Almost	Everyone	is	prepared	to	try/use	OpenMP4.0	and	
beyond	to	help	with	portability	issues	

–  Even	with	OpenMP	accelerator	direcZves,	etc.,	two	
different	source	codes	are	necessary		

–  Different	source	codes	for	two	or	more	parallel	
programming	constructs	does	encourage	people	to	
contain	parallel	code	

•  This	is	not	as	easy	to	see	in	direcZve	based	approaches	as	with	
other	approaches	based	more	on	libraries	

– Most	people	are	resigned	to	having	different	sources	for	
different	plavorms,	with	simple	#ifdef	or	other	
mechanisms	



What is holding OpenMP back


•  Mature	implementa1ons	are	not	everywhere	
•  Standard	for	accelerators	is	s1ll	being	defined	
•  Performance	is	not	there	yet	(see	next	two	slides):	

On	the	performance	portability	of	structured	grid	codes	on	many-core	
computer	architectures",	S.N.	McIntosh-Smith,	M.	Boulton,	D.	Curran	and	
J.R.	Price.	ISC,	Leipzig,	pp	53-75,	June	2014.		



On the Performance Portability of structured Grid codes 
… McIntosh-Smith et.al. ISC 2014


		

D3Q19-BGK	Lazce	Boltzman	code	



On the Performance Portability of structured Grid 
codes … McIntosh-Smith et.al. ISC 2014


Cloverleaf	lagraingian-Eulerian	hydrodynamics	code	



Sparse matrix vector product: GPU vs. CPU 
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Source: Victor Lee et. al. 
“Debunking the 100X GPU vs. CPU 
Myth”, ISCA 2010  

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU 

GPU CPU 
Baseline 

8 threads 
on 4 
cores 

Vectorize Register 
tiling + 

Pipelining 

Cache 
Blocking 

•  [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core 
2 Duo E8400 CPU … but they used an old CPU with unoptimized code 

•  Heavily optimized both the GPU kernels and the CPU code. 
•  We did not include memory movement onto the GPU … even 

though that would make the CPU look better! 

Result: a 2:1 speedup … which makes 
sense given better bandwidth of GDDR5 

*third party names are the property of their owners 



CASE STUDY: XGC1 PIC Fusion Code	
•  Par1cle-in-cell	code	used	to	study	turbulent	transport	in	magne1c	confinement	fusion	plasmas.		
•  Uses	fixed	unstructured	grid.	Hybrid	MPI/OpenMP	for	both	spa1al	grid	and	par1cle	data.		(plus	PGI	

CUDA	Fortran,	OpenACC)	
•  Excellent	overall	MPI	scalability	
•  Internal	profiling	1mer	borrowed	from	CESM	
•  Uses	PETSc	Poisson	Solver	(separate	NESAP	effort)	
•  60k+	lines	of	Fortran90	codes.	
•  For	each	1me	step:	

–  Deposit	charges	on	grid		
–  Solve	ellipZc	equaZon	to	obtain	electro-magneZc	potenZal	
–  Push	parZcles	to	follow	trajectories	using	forces	computed	from	background	potenZal	(~50-70%	of	Zme)		
–  Account	for	collision	and	boundary	effects	on	velocity	grid	

•  Most	1me	spent	in	Par1cle	Push	and	Charge	Deposi1on		
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Unstructured	triangular	mesh	grid	due	to	
complicated	edge	geometry	

Sample	Matrix	of	communicaZon	volume	



Programming Portability


•  Currently	XGC1	runs	on	many	pladorms	
•  Part	of	NESAP	and	ORNL	CAAR	programs	
•  Applied	for	ANL	Theta	program	
•  Previously	used	PGI	CUDA	Fortran	for	accelerators	
•  Exploring	OpenMP	4.0	target	direc1ves	and	OpenACC.	
•  Have	#ifdef	_OpenACC	and	#ifdef	_OpenMP	in	code.	
•  Hope	to	have	as	fewer	compiler	dependent	direc1ves	as	

possible.	
•  Nested	OpenMP	is	used	
•  Needs	thread	safe	PSPLIB	and	PETSc	libraries.	
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CUDA Fortran code conversion (Jianying Lang, PPPL)


anributes(global)	&	
subrouZne	pushe_kernel_gpu(istep,ipc,phase0,	&	
																			diag_on,dt_now)	
																.	
																.	
																.	
ith	=	1+	((threadIdx%x-1)	+	(threadIdx%y-1)*blockDim%x)	+		&	
						((blockIdx%x-1)	+	(blockIdx%y-1)*gridDim%x	)*	&	
						(blockDim%x	*	blockDim%y)	
	do	i=ith-1,	sp_num_gpu,	nthreads_dim	
								if(ptl_gid_gpu(i)>0)	then	
											x=ptl_ph_gpu(i,1:2)	
											phi=ptl_ph_gpu(i,3)	
											phi_mid=(floor(phi/grid_delta_phi)	+	0.5_work_p)	*			&				
											grid_delta_phi	
											call	field_following_pos2_gpu(x,phi,phi_mid,xff)	
											call	search_tr2_gpu(xff,itr,p)	
																.	
																.	

	call		
pushe_kernel_gpu<<<blocks,t
hreads>>>(istep,epc,phase0_g
pu,diag_on,dt_now)	
							

Launch	GPU	kernel	in		
host	program	

GPU	kernel	subrou1ne	

Call	host	program	in	FORTRAN	

#ifdef	USE_GPU	
						call	pushe_gpu	(istep,…,…)	
#else	
						call	pushe	(istep,…,…)	
#endif	
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Current Implementation XGC1 code(example)


•  Use preprocessor statement to 
switch between OpenMP and 
OpenACC 
 

•  Vectorization is critical for both  
Cori and Summit 

NERSC	 55	

#ifdef	_OPENACC	
!$acc	kernels	present(Ms,EDs)	ASYNC(istream)	
!$acc	loop	independent		collapse(2)	gang	
#else	
!$OMP		PARALLEL	DO	default(none)	&	
!$OMP&	shared(mesh_Nzm1,mesh_Nrm1,f_half,dfdr,dfdz,Ms)	&	
!$OMP&	shared(cs1,cs2,EDs,mass1,mass2)	&	
!$OMP&	PRIVATE(	index_I,index_J,	index_2D,	index_ip,	index_jp,	index_2dp,	&	
!$OMP&	shared(cs1_mesh_r_half,cs1_mesh_z_half)	&	
!$OMP&	shared(cs2_mesh_r_half,cs2_mesh_z_half)	&	
!$OMP&	num_threads(col_f_nthreads)	
#endif				
								do	index_I=1,	mesh_Nzm1					
								do	index_J=1,	mesh_Nrm1								
													z	=	cs1_mesh_z_half(index_I)	
													.	.	.	.	.	.	.	.	.	
!$acc							loop	independent	collapse(2)	vector													
								do	index_ip	=	1,	mesh_Nzm1													
								do	index_jp	=	1,	mesh_Nrm1																
													c	=	cs2_mesh_z_half(index_ip)	
													.	.	.	.	.	.	.	.	.	
#ifdef	_OPENACC	
!$acc	end	kernels	
#endif	



Some Recommendations from Portability Workshop 
Especially w.r.t. Library Portability


•  Common	base	soiware	environment	across	HPC	Centers	
–  Base	HPC	so=ware	stack	(standard	base	set	of	libs,	tools)	
–  Share	so=ware	build,	installaZon,	management,	tesZng	procedures/mechanisms	

for	HPC	centers	(e.g.	spack)	
–  SW	development	uZliZes	for	users	
–  Common	build	recipes,	methods	at	HPC	centers	

•  Performance	portability:	encourage	investment,	adop1on,	&	guidance	
–  Back-end	code	generaZon	
–  Compiler-based	approaches:	LLVM/JIT,	Rose		
–  Open	Standards	for	Parallel	CompuZng	
–  C++11/14/17	

•  DOE	investment	in	standards	commikees	
•  Library	developers	can	define	strict	interface,	then	ask	vendors	to	

confirm	to	them	
•  Extensions	to	MPI	to	exploit	fine-grained	parallelism	(intra-node)	
•  Ability	to	transform	individual	research	projects	or	libraries	into	

produc1on	capabili1es	



No One-Size Fits all solutions


•  With	MPI	we	made	it	work,	eventually	
•  Didn’t	maker	which	of	the	characteris1cs	your	
applica1on	had	–	
–  ParZcles	–	divide	among	processors	
–  Grid	–	hand-off	secZons	
– Matrix	–divide	off	rows	and	columns	

•  We	may	come	to	the	conclusions	that	no	one	
heterogeneous	architecture	nor	one	single	parallel	
programming	model	will	work	for	all	applica1ons	
	



Portable parallel programming is 
in bad shape.  Who to blame? 
•  Application programmers … 

This mess is your fault! 
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•  When you reward vendors for bad behavior 
(e.g. pushing their own standards), you get 
what you deserve. 

•  History has shown you the solution! 

•  We live in a market economy.  Your interests (consistent and 
stable environments across platforms from multiple vendors) 
are not the same as the vendor’s interests.    

– Unite and fight back. Revolt and force the change you need!!!! 
–  Isolated, you lack power.  Together you can shape the industry. 
–  Just look at the creation of MPI and OpenMP and OpenCL. 
– Be firm in your resolve: 

– ONLY USE vendor neutral, open standards (e.g. OpenMP, OpenCL, MPI) 
–  Standards take commitment and hard work.   Join us in that work. 



NERSC is the Mission HPC Facility for DOE 
Office of Science Research


Bio	Energy,		Environment	 CompuZng	 Materials,	Chemistry,		
Geophysics	

ParZcle	Physics,	
Astrophysics	

Largest	funder	of	physical	
science	research	in	U.S.		

Nuclear	Physics	 Fusion	Energy,	
Plasma	Physics	
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